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Abstract. Wavefunctions of electronic Wannier-Stark States in a superlattice are calculated 
with a finite Kronig-Penney model. Overlap integrals between electron and heavyhole 
wavefunctions centred in the same well layer. and in first- and second-neighbour wells 
are calculated as functions of the applied field. The results show good agreement with 
experimental results on photoluminescence. The problem is also treated by a one-band 
approximationmethod, whichgivesaclosedexpressionforthe wavefunctionofthe Wannier- 
Stark states; this is compared with the results of accurate calculations with the Kronig- 
Penney model. 

1. Introduction 

Wannier [ I ]  predicted long ago that the quasicontinuous energy bands, when subject to 
an applied electric field, will split up into discrete localized states which have become 
known as Wannier-Stark states. During the subsequent years there have been many 
theoretical investigations of the problem, concerned, however, mainly with the validity 
of Wannier's arguments. Recently, several theoretical [2-41 and experimental [5.  61 
investigations, exploiting the favourable conditions afforded by superlattices (large 
period and small subband width). have clearly demonstrated the effect of Wannier- 
Stark states as predicted by Wannier. Therefore, for further investigation of the Wan- 
nier-Stark states, it will be of interest to develop convenient and effective methods for 
carrying out realistic calculations of the Wannier-Stark states. 

In this paperweshall first carry out, by anexpansion method. theoreticalcalculations 
for a finite Kronig-Penney model on which is superposed the potential of an applied 
electric field, focusing on the variation in the Wannier-Stark localization with increasing 
electric field. Our calculation results are quantitatively compared with the results of the 
photoluminescence (PL) experiment [5] for intermediate and high fields. Bastard and co- 
workers [2,3] found that the simplest semiclassical treatment reproduced the Wannier- 
Stark localization remarkably well. We had proposed a more elaborate one-band 
approximation method in connection with Landau levels in a superlattice band in a 
parallel magnetic field with good results [7]. We shallshow that thismethod leadssimply 
to a closed expression for the Wannier-Stark localized wave function in terms of the 
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banddispersionfunctionE(k), which has been found toreproduceclosely theaccurately 
calculated wavefunction. 

2. Finite Kronig-Penney model for superlattices under an electric field 

We shall use a Kronig-Penney model consisting of a finite number of quantum wells 
limited by infinite-potential walls asillustratedin figure 1 tosimulate asuperlattice under 
an applied electric field. The two barriers at the edge are wide enough (e.g. 100 A) so 
that the wavefunctions of the bound states in the quantum wells are actually zero at the 
infinite-potential walls. We can use a series of sine functions as the basic functions for 
expanding the wavefunctions of the superlattice: 

where L is the total width between the infinite walls; the origin of the z coordinate is 
taken at the left infinite wall. Inserting the wavefunction into the equation 

- (1/2m*)(dZyl/dr’) + [ V ( z )  + eFz]y  = Eyt (2) 

where M* i s  the effective mass (here we assume that the effective masses in the well and 
barrier materials are equal) and V(r)  is the finite Kronig-Penney potential in our model 
(figure 1) under zero field. we obtain the secular equation for the expansion coefficients 
C. in (1). The Hamiltonian matrix elements of V(z )  and eFz are very simple with our 
use of the sine functions. 

For direct comparison with the available experimental results [5 ] .  we have taken in 
our calculation the same parameters for the GaAs/AIo,,,Gao,6SAs superlattice as in [ 5 ] ,  
namelythe bandoffsetsfortheconduction andvalence bandsare0.26eVand0.175 eV, 
the effective masses for electrons are 0.067moand 0. lmo, the effective masses for heavy 
holes are 0.4mo and 0.4mo, and the widths for the well and the barrier are 30 8, and 35 A. 
An average electronic effective mass of 0.085~0 is used in our calculation. The finite 
lengthofour model for thesuperlattice will interfere with the WannierStark localization 
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Figure 2. Overlap integrals of the electron and 
heavy-hole wavefunctions localized in the Same 
well layer (denoted by 0) and in first- and second- 
neighbourwells(denotedby i l ,  i2)asfunctions 
of external electric field. 

Figure 3. Electronic wavefunctions (in units of 
l /~)fortheelectricfieldZ x lO'Vcm-'(curve 
])and5 x lO'Vcm-'(curve2). 

below a certain threshold electric field. We find that with an electric field Flarger than 
lo4 V cm-', the eigen-energies conform to the Wannier-Stark ladder E = E, + eFnd, 
where E, is the eigen-energy in a single quantum well. We have calculated the overlap 
integrals between electron and heavy-hole wavefunctions, which are localized around 
the same well layer, or first- and second-neighbour wells as functions of the external 
field F. The results are shown in figure 2, where 0, 21, i-2 designate the relative 
dispositions of the localization sites for the electron and hole. In figure 2 we can 
distinguish two regions of the electric field: intermediate (1.5 x lo4 V cm-' < F < 
5 x lo4 V cm-I), and high ( F >  5 x lo4 V cm-I), just as in [5] (the low-electric-field 
region cannot be covered properly by our finite model (figure 1)). In the high-electric- 
field region, the Wannier wavefunctions are largely localized in one well; the overlap 
integral 0 is largest and approaches unity when the electric field increases, while the 
overlap integrals * 1 and *2 decrease towards zero. In the intermediate-electric-field 
region, the case is more complex. When the electric field decreases, the overlap integral 
0 decreases and the overlap integrals 21 and +2 increase. At a critical field 
(2.5 x lo4 V cm-' in our case) the overlap integral 0 becomes smaller than the overlap 
integral i-1, and at an electric field of 1.5 x lo4 Vcm-' the overlap integral 0 equals 
zero. These results are completely in agreement with the PL experimental results (figure 
2 in [5]). From figure 2 in [5] we see that the - 1 PL peak is larger than the 0 peak at a bias 
voltage of +0.4 V (corresponding to an electric field of 2.4 x lo4 V cm-I), and the - 1 
peak becomes smaller than the 0 peak at a bias voltage of 0 V ( F =  3.2 x lo4 V cm-I). 
The electric field value at which the -1 and 0 peaks are equal is in agreement with the 
theoreticalvalue(2.5 x 104V cm-t).Atabiasvoltageof+0.8 V ( F =  1.6 x lo' Vcm-') 
the 0 PL peak disappears, which is also in agreement with the theoretical value 
(1.5 x lo4 Vcm-I). Thisresultisalsoinagreementwiththeresultoftheone-bandtight- 
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binding model discussed by Bleuse et a1 [2]. According to that model the wavefunction 
value of the vth state in the nth well is given by Jn-,(W/2eFd) (Jn-"(x) is the Bessel 
function of order n - v ) .  In our case, n - v = 0. the band width W = 45 meV and d = 
65 A; thus for F = 1.5 x 1O'V cm-l we obtain W/2eFd = 2.3, which is nearly the zero 
point of Jo(x) .  

In figure 3 are shown the wavefunctions calculated with two electric fields (2 x lo4 
and 5 X IO4 V cm-I). From the figure we see that with a field of 2 X lo4 V cm-' the 
magnitude of the wavefunction in the centre well is smaller than that in the nearest- 
neighbour wells, resulting in - 1 peaks larger than the 0 peak. In the case with a field of 
5 X lo4 V cm-' the magnitude of the wavefunction in the centre well is much larger than 
that in the neighbouring wells. and the localization isobvious. It is also to be noted that 
the wavefunction is not symmetrical with respect to the origin: on the left-hand side 
(lower potential) the wavefunction is oscillatory, taking up positive and negative values 
at successive wells, while on the right-hand side (higher potential) the wavefunction is 
always positive with maxima at the successive wells, 
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3. One-band model ofthe WannierStark ladder and corresponding wavefunction 

In the above, we have treated the Wannier-Stark states by direct quantum mechanical 
calculation with a limited Kronig-Penney model on which is superposed the applied 
potential. As the Wannier-Stark problem is essentially the problem of quantization of 
anenergy bandin thepresenceofanapplied field, it  is thusofinterest toexploreeffective 
methods to treat the problem on the basis of a superlattice energy band as given (e.g. 
that derived with a Kronig-Penney model). We have already developed such a method 
in connection with calculating Landau levels formed in a superlattice energy band in a 
parallel magnetic field with good results [7]. The method is a one-band approximation 
method. It is a formal generalization of the usual effective-mass theory, namely, for a 
given energy band, the envelope function is assumed to be governed by an effective 
Hamiltonian 

H = E(k )  + eFz (3) 

where E ( k )  is the band dispersion function in t h e ~ k ,  direction, k is the operator 
(l/i)(d/dz). For solving the problem we transform the Schrodinger equation into 
momentum representation by 

z = iA dldp. (4) 

[eFih dldp + E ( p / h ) ] q ( p )  = Ey(p) ,  

The corresponding Schrodinger equation is 

( 5 )  

The solution of (5 )  is easily obtained: 

where Cis  a normalization constant. Owing to the nature of E(k), k is in the nature of 
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a cyclic variable; thus v ( p )  must be a periodic function in momentum space with period 
h(2n/d), which demands that 

nld 
[E - E(k)] dk = 2x11 

eF -nld 
(7) 

where k = p/h. In this scheme, equation (7) provides the quantization condition for the 
eigen-energy, from which we obtain 

E = eFnd + - E(k) dk. 
2z I"" -n/d 

Equation (8) is just the Wannier-Stark ladder formula first derived by Wannier [l]. The 
second term in (8) is the average energy of the energy band. 

The energy band E ( k )  can be simulated by a series in cosine functions [7]: 
N 

E(k) = 2 A,z cos(nkd). (9) 
n = O  

Then the eigen-energy in (8) is 

E = eFnd + Ao. (10) 
The normalization constant C = a in wavefunction (6) is obtained from the nor- 
malization condition 

With the eigen-energy (10) we transform the wavefunction rp(p) (6) into the coordinate 
representation, 

where z' = z - nd, q r ( z )  is the Bloch function with wavevector k in the single band; 

q n ( z )  = exp(ikz) U k ( z ) .  (13) 
Equation (12) gives a general formula of the wavefunction for any form of band energy 
E(k) .  If we take only two terms in the band energy expansion (9). 

E(k)  = A o  + A ,  cos(kd), (14) 

and let z'/d = n - U (i.e. the coordinate at the centre of wells), Uk(z') = &[(n - u)d] 
= constant, from (12) we obtain 

which is just the result obtained by Bastard and co-workers [2, 31 with the one-band 
tight-binding model. 
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Table 1. Wave-function values (in units of l,h/a at well centres calculated from equation 
(?)(inLhefintrows),andfromequation(lZ)(in thesecondrows),forelcctricfields2 x IO'. 
5X1O4and1X1O5Vcm~'.  

~~~ ~ ~~~~ 

V(p)(unitsof ( l / f l )  for the followingrld-values 
~~ 

- ..  .. . , .. ... F 
(Vcm-') -4 -3 -2 -1 0 1  2 3 4  

~ ~~~ 

2 X IO' 0,050 -0.173 0.450 -0413 0,572 0.828 0.352 0.083 0.012 
0.056 -0,175 0,450 -0.807 0.562 0.821 0.349 0.082 0.013 

5 x 10' 0.00s -0.0% 0.120 -0.485 1.266 0.419 0.052 0.004 0.000 
0.006 -0.026 0.121 -0.488 1.256 0.416 0.052 0.003 0.000 

1 x IO1 0.016 -0.023 0.048 -0.265 1.375 0.193 0.009 0,001 0,000 
0.002 -0.009 0.048 -0.279 1.374 0.193 0.011 -0.001 0.000 

We compared the wavefunctions for the superlattice in the electric field region of 
2 x 104-1 x 105V cm-' calculated from equation (12) and directly from equation (2). 
The wavefunction values at well centres calculated by the two methods for three electric 
fields are given in table 1. From the table we see that the agreement is very good. 

In summary. with a finite Kronig-Penney model on which is superposed an applied 
electric potential we have investigated the Wannier-Stark localization process for inter- 
mediate to high elcctric fields. We calculated the overlap integrals of the electron and 
heavy-hole wavefunctions localized around the same well layer or around first- and 
second-neighbour wells. and the results are in agreement with the PL experimental 
results, We derived by a one-band approximation method general formulae for the 
eigen-energy and wavefunction of the superlattice under an electric field. They can be 
reducedtotheresultsofBastardandco-workersasaspecialcase. It hasbeenverified that 
the wavefunction iscompletely in agreement with the accurately calculated wavefunction 
for the case of modelling the superlattice with a Kronig-Penney model. 
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